Families of Relative Equilibria in Hamiltonian Systems with Dissipation
نویسنده
چکیده
In this note the influence of dissipation on families of relative equilibria in Hamiltonian systems will be considered. Relative equilibria can be described as critical points of an appropriate functional. This characterisation can be used to give sufficient conditions such that in finite dimensional systems with dissipation the extremal families of relative equilibria are stable under dissipation. Furthermore, a full class of families of relative equilibria in the Navier-Stokes equations will be analysed. For these families it will be shown that the extremal family of relative equilibria is an attractor and the non-extremal families of relative equilibria are unstable.
منابع مشابه
Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation∗
This paper studies the destabilizing effects of dissipation on families of relative equilibria in Hamiltonian systems which are non-extremal constraint critical points in the energy-Casimir or the energy-momentum methods. The dissipation is allowed to destroy the conservation law associated with the symmetry group or Casimirs, as long as the family of relative equilibria stays on an invariant m...
متن کاملStability Transitions for Axisymmetric Relative Equilibria of Euclidean Symmetric Hamiltonian Systems
In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev s...
متن کاملStability transitions for axisymmetric relative equilibria
In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy–momentum confinement, KAM, and Nekhoroshev s...
متن کاملStability of Relative Equilibria in the Planar n-Vortex Problem
We study the linear and nonlinear stability of relative equilibria in the planar n-vortex problem, adapting the approach of Moeckel from the corresponding problem in celestial mechanics. After establishing some general theory, a topological approach is taken to show that for the case of positive circulations, a relative equilibrium is linearly stable if and only if it is a nondegenerate minimum...
متن کاملBifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry
For Hamiltonian systems with spherical symmetry there is a marked difference between zero and non-zero momentum values, and amongst all relative equilibria with zero momentum there is a marked difference between those of zero and those of non-zero angular velocity. We use techniques from singularity theory to study the family of relative equilibria that arise as a symmetric Hamiltonian which ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999